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A study of the error introduced by commonly used approximations of average Maxwellian 
reaction rate coefftcients is presented. Reactions examined are charge exchange and ionization 
between neutral atoms and ions of a plasma containing hydrogen isotopes and helium. Since 
some approximations considered have a complementary character, in the sense that one fails 
in some ranges where the other is successful, it is possible to select in each range the 
appropriate approximation in order to achieve the required accuracy. A particular 
combination of methods is suggested which has been tested in Monte Carlo problems with the 
aim of investigating both its cost and its efficacy. 0 1985 Academic Press Inc. 

1. INTRODUCTION 

In fusion device design, Maxwellian average reaction rate coefficients for neutral- 
ion interactions are computed for a given injection energy of the neutral particle: 

(a) by a straight numerical integration [ 1,2], averaging U,U(ZI,) over the ion 
velocity distribution, v, being the relative velocity between the interacting particles; 

(b) by analytical approximating expressions [3,4]; 
(c) by some drastic approximations, substituting the distribution of the plasma 

ion velocities with an appropriate average velocity [5, 61. 

When used in sophisticated computer codes (e.g., Monte Carlo codes) where a 
wide range of injection neutral energy beside a temperature gradient of the plasma 
might be considered in the same problem, all of the above methods reveal some 
weaknesses. For example, Galbraith and Kammash [4] have pointed out numerical 
difficulties arising in some special cases in their (not simple) analytical approx- 
imations. On the other hand, numerical integration becomes troublesome when 
neutral injection energy is much higher than plasma temperature, whereas, in the 
same conditions-ion velocity being negligible with respect to that of the 
neutral-the approximation of an average velocity may be quite satisfactory. In the 
opposite situation, however, this last approximation will obviously be too rough. 

The aim of this work is to study the error induced by these approximations in 
order to keep it under control. In fact, accurate computation of average rate coef- 
ficients, besides avoiding error amplification (cross sections are experimentally 
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uncertain, their representation through empirical formulas introduces other errors), 
may also be a fundamental requirement in order to avoid dangerous inconsistencies 
in numerical models as, for example, may happen in Monte Carlo methods, a point 
discussed in the last section. 

The above considerations suggest that there is some reason to hope that the 
average velocity approximation, which offers the obvious advantages of simplicity 
and praticability, can usefully represent an alternative to other approximations in 
some ranges. In fact, as will be seen, a strategy combining different methods can be 
adopted, to obtain a required accuracy. 

We shall discuss in Section 3 the error introduced by approximations (a) and (c); 
Section 4 will be devoted to approximation (b). The reactions considered are charge 
exchange between hydrogen isotopes, between neutral hydrogen isotopes and alpha 
particles, and ionization of neutrals by positive ions. Ionization by electrons has not 
been considered, several simple analytical expressions for rate coefficients being 
already available [3,4, 71. 

2. RATE COEFFICIENT APPROXIMATIONS 

We assume that 

(i) cross sections a(~,) of interactions between neutral particles and plasma 
ions are given as functions of the relative velocity nr = 1 v - v,( between the neutral 
projectile with injection velocity v, and mass m,, and the plasma ion with velocity v 
and mass mp ; 

(ii) ions have a Maxwellian distribution of velocities, M(v), with temperature 
T,(W. 

To analyze the transport of neutral particles in plasmas one needs u(v,), and this 
quantity is usually approximated by an “effective” cross section, u*(~lJ, having the 
property of preserving the reaction rate between projectile and target. Therefore 

u*(u 
n 
)= (44)ur) 

vn ’ 

where the average is to be performed over the velocity distribution of the targets. The 
reaction rate coefficient in Eq. (1) is written thus 

with integration carried out over the whole velocity space. By performing this 
integration one has [4] 
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where aP is the parameter characterizing the Maxwellian, 

(3) 

and E, the injection energy corresponding to 0,. 
We shall adopt, as in [4], cross sections for the interactions here considered, 

written in the form given by Rivike [8]. The approximations to R, represented by 
the analytical formulas given in [4] will be hereafter referred to as the 
Galbraith-Kammash approximation and denoted by GK. 

For a numerical approach to Eq. (2) we may observe that, since our integrals have 
the general form 

R np = 
I 

O” epX2f(x) dx, 
0 

a quadrature formula of the highest algebraic degree of precision is the 
Gauss-Hermite quadrature formula [9, lo]. The approximation to R,, obtained by 
one of these formulas using IZ points in the positive semiaxis will be denoted by 
GH n+. It can be anticipated that as few points as n = 2 + 6 may provide sufficient 
precision, so that these formulas can usefully be implemented in computer codes. 

Numerical integration by Gauss-Hermite formulas can be improved in all 
asymptotic cases E, s T,, as follows. By rewriting Eq. (2) in the form 

the second exponential can be neglected when, say, 

(4) 

Moreover, by the substitution 

x2 = qv, - I&)*, 

501/Sl/l-6 
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Equation (2) reduces in these cases to 

We shall denote by GH n the Gauss-Hermite computation of integral (5) that 
involves n evaluations of the function. By comparing Eq. (5) with Eq. (2), it is seen 
that the exponentials in the expression of f(x) have disappeared. As a first conse- 
quence, the computation time of GH n reduces by about 40% in our cases, with 
respect to GH n+. But there is a second, more important advantage. Namely, the 
function that has to be evaluated in Eq. (5), acquires a simpler character in all our 
reactions, so that the number n of points required for a given accuracy is greatly 
reduced (we recall that Gauss-Hermite formulas with IZ points in the range 
(--co, +co) integrate exactly wheneverf(x) is a polynomial of degree not higher than 
2n - 1). 

Finally, one can avoid the averaging operator and simply replace (~$0,) 0,) with 
CT(q) v,* 9 where v,* is a relative velocity representative in some way of the velocity 
population of the targets. In particular, one could take, as in [6], an average velocity 

i.e., 

II,* = (vy, 

VT = (3Tp/mp + vf#‘*, (6) 

or, almost equivalently [5], 

?I,* = ((v)’ + vy*, 

yielding 

v,* = (8T,/zm, + vz)“*. 

We shall adopt here definition (6) and denote by AV the approximation to R,, 
obtained through this average velocity. 

Assuming as a reference value for R,, the one obtained by a Simpson numerical 
integration of expression (2) with precision 10T5, the relative difference of the R,, 
value yield by AV or GH approximation with respect to this reference value will be 
called hereafter “relative error” and denoted by E. The behaviour of this error will be 
examined in the next sections, for hydrogen interactions with protons and alpha 
particles. If interacting particles n,p have the same cross section as n’,p’, then from 
Eq. (2) it is seen that the scaling rule for hydrogenic species is 

RJE,,, TP)=R,,,pl 
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The hydrogen injection energy ranges in this study from zero to 300 keV, and 
plasma temperature up to 50 keV. Computations were carried out on the 
IBM 370/168 computer, double precision arithmetic. 

3. RATE COEFFICIENT ERRORS 

3.1. Charge Exchange Between Hydrogen Isotopes 

Riviere’s formula for cross sections of charge exchange between a neutral hydrogen 
atom and a proton is 

a 
6.937 x lo-“(1 - 0.155 log E)’ 

cx = 1 + 1.112 x 10-15E3.3 ’ 

where E is the relative energy in electron volts. 
The absolute value of the error E in computing the average Maxwellian reaction 

rate coefficient by AV and GH is given in Fig. 1 for E,, T, Q 5 keV and in Figs. 2, 3 
for higher values of these variables. Injection energy of the neutral is quoted along the 
lines. We shall first comment on the results of Fig. 1 where AV is compared to 
GH4+. 

If we inject a neutral of a given energy E, into the plasma and compute the 
average rate coefI?cient as the particle penetrates towards increasing plasma 
temperatures TP, we see that the AV-error increases, although its maximum value is 
always less than 10% in the case examined. This first result confirms that AV is a 
rather good approximation, at least, say, for boundary plasma problems. Another 

FIG. 1. Hydrogen charge exchange: R,, error (%) in AV(-) and GH4’(---) vs plasma 
temperature TP and neutral injection energy E, (keV). 
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0.1 1 Tp(keV) 10 

FIG. 2. Hydrogen charge exchange: R, error (%) in AV vs plasma temperature T,, and neutral 
injection energy E, (keV). Points corresponding to p = 20 are marked with circles; those to p = 100 with 
triangles. 

interesting feature which can be read in Fig. 1 is that the error in GH4+ has, 
fortunately, a complementary behaviour, at least up to certain plasma temperatures: 
it begins with a decrease as the plasma temperature increases. Its profile shows that it 
is not convenient to use GH4+ for high values of the ratio 

1 lo T,,bV) 

FIG. 3. Hydrogen charge exchange: Rnp error (%) in GH2 (---), GH6 (- . -) and GH6+ (-). 
Points corresponding to p = 4 are marked with circles. 
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whereas results are excellent elsewhere. In fact, the GH4+ error drops, changes sign 
(twice), and increases again. After the change of sign (appearing as a singularity in 
the log-log representation) we have represented only two profiles (namely, E, = 0.05, 
0.5 keV), the others being almost analogous and remaining, however, below the 
maximum error of 1% occurring at the extremity T, = 5 keV. 

Two lines referring to different approximations but characterized by the same E, 
meet in Fig. 1 at a point which can be assumed as a separation point between the two 
approximations: if we adopt AV for temperatures at the left of this point, and GH4 ’ 
at the right, then the maximum error will be halved with respect to AV used alone, 
reaching a value of about 4%. These points will now be characterized in terms of the 
ratio p, i.e., of the pair (E,, T,). Inspection of the results shows that for all these 
points p N 5 (a common value, since we have two families of parallel lines). We can 
conclude that, if we adopt the rule 

E,<5 keV P>5 use AV 
PC5 use GH4 +, 

then the error will be limited to 4%. These conclusions, obtained from the errors 
plotted in the figures given here, will be henceforth collected in Table I. Information 
about the prevailing sign of the error will also be given, whenever possible, in Table I. 

The error analysis proceeded, of course, by finite increments of the two variables 
E,, Tp, with a finer step than that plotted in Fig. 1. However, the behaviour of the 
error is continuous because cross sections are smooth (apart from the apparent 
singularity introduced by switches of sign). 

As regards the left side extremity of our figures (below 100 eV) the above rule still 
holds, provided Riviere’s expression for cross section can be extrapolated at low 
relative energies. 

The high injection energy range described in Figs. 2 and 3 is a little more 
demanding for a given accuracy. When AV (Fig. 2) becomes insufficient, numerical 
integration may now require six points if the maximum error is to be kept around 
10%. Injection energy (in keV) has here been divided into two regions: 5 < E, < 40, 
where AV could be applied up to the points marked with a circle (i.e., for p > 20) 
and 40 < E, < 300, where a common limiting value for AV could be p = 100. (The 
non-monotonic behaviour of AV as E, increases from 10 to 40 keV is explained by a 
change of sign taking place around E, = 30 keV. Note that the worst situation is 
reached at E, = 300 keV, T, = 3 keV, where the cross section is quite small.) If the 
above two limiting values for p are used, then the numerical integration can be 
carried out as described in Table I. The separation point between GH and GH’ is 
p = 4, derived from Eq. (4) for m, = mp. Figure 3 shows the error in the numerical 
integration: in asymptotic conditions GH2 is often sufficient. The points where the 
application of the asymptotic expression (5) must stop and GH6+ begin are marked 
with circles lying on the same vertical line. When errors fall below l%, they oscillate, 
remaining below this bound, and are no longer faithfully represented. 
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FIG. 4. Hydrogen-helium charge exchange: Rnp error (%) in AV (-) and GH4+ (---) vs plasma 
temperature Tp and neutral injection energy E, (keV). 

3.2. Charge Exchange between Hydrogen and Helium Isotopes 

Riviire’s cross sections for charge exchange between hydrogen and alpha particles 
are 

log u,, = -16.54 + O.O9(log E)* for E< 12keV 

= -14.78 - 1.33(4.5 - log E)* for E > 12keV, 

where E in electron volts is the relative energy. 

FIG. 5. Hydrogen-helium charge exchange: Rnp error (%) in AV vs plasma temperature T, and 
neutral injection energy E, (keV). Points corresponding to p = 3.5 are marked with circles, those to 
p = 20 with triangles. 
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1 IIII / I, 

10 T&W 

FIG. 6. Hydrogen-helium charge exchange: R,, error (%) in GH2 (---) and GH4+ (-) vs plasma 
temperature T, and neutral injection energy E, (keV). Points corresponding to p = 1 are marked with 
circles. 

The plots of AV and GH-errors in Figs. 4-6 are given with the same conventions 
as before. In particular, with some exceptions, errors E are no longer represented 
when they tend to increase above 10% or when they oscillate below 1%. 

From Fig. 4 it is seen that for both E, and T, less than 1 keV, (including very low 
values not represented in the figure) AV can be safely used-the error being less than 
5% and this maximum being reached only at one point. The GH4 + curve 
corresponding to E, = 1 keV is truncated at Tp = 5 keV where E = 1.5%; however, at 
10 keV we have E = 1.2%. Therefore the alternative method to AV, when Tp 

3 ,/,‘I’ ,y\ i= 

1 Tp(keV) 10 

FIG. 7. Hydrogen ion ionization: R,, error (%) in AV vs plasma temperature T, and neutral 
injection energy E, (keV). Points corresponding to p = 20 are marked with circles. 
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1 10 Tp(keV) 

FIG. 8. Hydrogen ion ionization: R,, error (96) in GH2 (---) and GH4+ (-) vs plasma 
temperature T, and neutral injection energy E, (keV). Points corresponding to p = 4 are marked with 
circles. 

increases, also has a maximum of about 5%, and only at one point. (Local pertur- 
bations due to change of sign in AV hide the substantial complementarity of the two 
methods here.) 

Figures 5 and 6 give the error behaviour at higher injection energies. For numerical 
integration (see Table I) these energies are divided into two groups, one below 
10 keV, where GH2 and GH4+ have been used, and another above 10 keV, where 
GH2 and GH3 + have been used. The separation point between GH and GH + is now 
P = 1 Fq. (4)). 

3.3. Ionization by Positive Ions (Hydrogen Isotopes) 

With the relative energy E in electron volts, Riviere’s cross section for 
E Q 150 keV is written 

log Uti= -0*8712(log E)’ + 8.156 log E - 34.833. 

For E < 3 keV, cli is negligible with respect to other interactions occurring in the 
plasma. The AV error is large just when uiI is negligible (Fig. 7); otherwise AV can 
largely satisfy at least those problems not requiring too high accuracy. However, a 
possible alternative to AV is GH2 or GH4+ (see Table I) whose errors are shown in 
Fig. 8. 

4. COMPARISON BETWEEN GH AND GK 

Up to now we have examined the behavior of the AV approximation, the simplest 
and most economic one, finding for each reaction the range of E, and T, where its 
error is acceptable, and switching to the numerical integration formulas only when 
AV was no longer usable. At the boundary of the AV validity range one could also 
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switch to the explicit analytical formulas GK. The errors introduced by these 
formulas, as pointed out in [4], are of the order of 10%. Therefore, as far as accuracy 
is concerned, numerical integration and GK seem largely equivalent. The choice 
between the two methods then depends upon which of the two is faster and, also, 
which is more numerically stable. The decision about these two requirements, velocity 
and stability, depends in its turn on the problem one has to solve (i.e., on the range of 
energies and temperatures) and the computer one is going to use. Unfortunately, 
application of the GK approximation is not always straightforward, in the sense that 
in some energy ranges it gives rise to numerical troubles [4, p. 10561. For this reason 
we were unable to carry out a systematic analysis of the GK error, similar to the GH 
analysis, scanning all the energy-temperature space considered. However, in ranges 
where no numerical instabilities occur, one can make use of the following conclusions 
to decide between GH and GK. 

For charge exchange, the velocity ratio between GH4+ and GK is 5/4 at low 
injection energy and almost 1 at high energy. For ionization the same ratio is 6/7. 
Thus GK is competitive with GH4 + . Of course, GH2 + requires half the time of 
GH4’ and, as pointed out in Section 2, a further 40% reduction is offered by the 
asymptotic formulas GH2. 

5. DISCUSSION AND CONCLUSIONS 

The problem of controlling the size of the error in R, estimates for neutral-ion 
interactions has been answered by the error profiles given. With these results one may 
design a strategy of approximations suited to one’s particular problem: when the 
average velocity approximation produces “effective” cross sections u * significantly 
different from the properly averaged ones, more precise approximations have to be 
used. These may be numerical quadratures or also analytical expressions. 

The strategy epitomized in Table I bounds the error to around 5% in boundary 
plasma problems and around 10% in supplementary heating and fuelling problems. 
This strategy has been implemented and tested in the low energy range for a 
boundary plasma problem solved by a Monte Carlo code [ 111 in a realistic situation 
including complex geometry and wall interactions. Cross sections were computed 
according to Eq. (1) whenever the neutrals changed their relative energy during their 
histories. With respect to the use of the AV approximation alone, it gave rise to an 
increment of 7% in computation time. In this problem energies and temperatures were 
typically well below 1 keV, so that besides AV, only GH4+ was used for charge 
exchange. 

Finally, it may be interesting to comment on the influence of the strategy proposed 
here in a problem which arose in the Monte Carlo choice of the neutral energy after a 
charge exchange with plasma ions, discussed in [6]. It was shown there that a highly 
accurate knowledge of rate coefficients was required when a special sampling 
technique was used. If this requirement was not satisfied, in fact, the simulated model 
became inconsistent in the following sense: after a charge exchange the number of 
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injected neutrals increased or decreased. This bias was numerically evaluated in two 
typical cases of low and high injection energy when rate coefficients were approx- 
imated through v,*. A uniform decrease of the number of neutrals was observed at 
the rate of about 6% at each charge exchange collision after the tirst. By applying in 
these two examples the more accurate evaluation of the rate coefficients proposed in 
Table I, the bias was still present, but was reduced to about 1% and, what is more 
important, its sign was no longer constant, so that the error was no longer amplified 
along the collision cascade. This severe test confirms that the approximations used in 
both the low and high energy range considered seem to behave reasonably well. 
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